Going with the flow

US Engineers have built a fuel cell with no membrane that mimics the flow of toothpaste being squeezed from a tube.

The device could prove more efficient than conventional fuel cell designs for use in consumer electronics and military devices, and cost less to produce, University of Illinois researchers believe.

The team threw away the membrane usually needed to separate the fuel and oxidant by using ‘laminar flow’ behaviour. The fluids flow through micro-scale channels, which induce different flow behaviour compared with large-scale pipes. As a result, the two liquids have no turbulence and so meet without mixing, passing over the anode and cathode in a simple Y-shaped channel.

Researcher Prof Paul Kenis said a key advantage of the fuel cell is that it can use more reactive alkaline chemistry, which is superior to conventional acidic systems in the same way that alkaline batteries perform better. ‘Alkaline chemistry is quicker and the reaction kinetics are better,’ he said. ‘But the majority of alkaline fuel cells are expensive and are used in space programmes. They can only run on ultra-pure hydrogen.’

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox