Graphene flaws improve gas sensing sensitivity

Researchers have discovered a way to create a highly sensitive chemical sensor based on the crystalline flaws in graphene sheets. 

The imperfections have unique electronic properties that the researchers were reportedly able to exploit to increase sensitivity to absorbed gas molecules by 300 times.

The study - conducted by researchers at the University at Illinois, Chicago (UIC) and Purdue University, Indiana - is available online in Nature Communications.

According to UIC, when a graphene lattice or sheet is formed, its polycrystalline structure has random boundaries between the single-crystal grains. The properties of the lattice are significantly affected by these grain boundaries, said Amin Salehi-Khojin, UIC assistant professor of mechanical and industrial engineering and principal investigator on the study.

In many applications, grain boundaries are considered faults because they scatter electrons and may weaken the lattice but Salehi-Khojin and his colleagues showed that these imperfections are important to the working of graphene-based gas sensors. They created a micron-sized, individual graphene grain boundary in order to probe its electronic properties and study its role in gas sensing.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox