Graphene forms template for two-dimensional hybrid materials

Researchers have developed a new technique for forming a two-dimensional, single-atom sheet of two different materials with a seamless boundary.

The study, carried out by researchers at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) and the University of Tennessee and published in Science, could enable the use of new types of 2D hybrid materials in technological applications and fundamental research.

The researchers combined two compounds - graphene and boron nitride - into a single layer only one atom thick. Graphene, which consists of carbon atoms arranged in hexagonal, honeycomb-like rings, has attracted waves of attention because of its high strength and electronic properties.

‘People call graphene a wonder material that could revolutionize the landscape of nanotechnology and electronics,’ ORNL’s An-Ping Li said in a statement. ‘Indeed, graphene has a lot of potential, but it has limits. To make use of graphene in applications or devices, we need to integrate graphene with other materials.’

One method to combine differing materials into heterostructures is epitaxy, in which one material is grown on top of another such that both have the same crystalline structure. To grow the 2D materials, the ORNL-UT research team directed the growth process horizontally instead of vertically.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox