Graphene helps tactility of solar powered prosthetic skin
Synthetic skin powered by the sun could give the sense of touch to robots and amputees fitted with prosthetic limbs.
Researchers at Glasgow University have developed a new way of generating solar power for robotic and prosthetic limbs using graphene.
Graphene is an atom-thick layer of material, which includes high conductivity as one of its numerous properties. The researchers have previously used graphene to build a pressure-sensitive electronic skin for prosthetic hands.
Now, in a paper published in Advanced Functional Materials, they demonstrate that another of graphene’s properties – its optical transparency - can also be harnessed for electricity generation. Around 98 per cent of the light that hits the material’s surface passes straight through it, according to Dr Ravinder Dahiya.
So by placing solar cells directly underneath the layer of graphene, electricity can be generated to power the synthetic skin, he said.
“If we fabricate a solar cell and transfer the skin on top of that, then the entire structure will be able to generate power, because light can enter through the skin, and it will also be touch sensitive,” said Dahiya.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...