Hydrate research will help measure 'frozen' gas trapped in seafloor

A collaboration between the National Oceanography Centre (NOC) and Southampton University is to develop an instrument capable of simulating the high pressures and low temperatures needed to create hydrate in sediment samples.

Dr Angus Best of NOC and Professors Tim Leighton and Paul White from Southampton University’s Institute of Sound and Vibration Research (ISVR) have been awarded a grant of £800,000 by the Natural Environment Research Council (NERC) to investigate methods for assessing the volume of methane gas and gas hydrate locked in seafloor sediments.

Dr Best, who is leading the project, said, ‘Greenhouse gases, such as methane and carbon dioxide, are trapped in sediments beneath the seafloor on continental shelves and slopes around the world. Currently, there are only very broad estimates of the amount of seafloor methane and hydrate.’

The team plan a series of experiments on a range of sediment types, such as sand and mud. They intend to map out the acoustic and electrical properties of differing amounts of free methane gas and frozen solid methane hydrate.

The laboratory-based approach adopted by the team will involve the development of a major new Acoustic Pulse Tube instrument at NOC. Using acoustic techniques and theories developed by the ISVR team, they aim to provide improved geophysical remote sensing capabilities for better quantification of seafloor gas and hydrate deposits in the ocean floor.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox