Hydrogel manipulated into 3D forms for use in soft robotics
Scientists have found a way to direct the growth of hydrogel to mimic plant or animal tissue structure and shapes, an advance that could be utilised in soft robotics.
The findings, published in Proceedings of the National Academy of Sciences, suggest new applications in areas where hydrogel is commonly used, such as such as tissue engineering or compliant robots. The team from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University (CMU) has filed a patent on the development.
In nature, plant or animal tissues are formed as new biomass is added to existing structures. Their shape is the result of different parts of those tissues growing at different rates.
Mimicking this behaviour of biological tissues in nature, the research team comprising CMU scientists Changjin Huang, David Quinn, K. Jimmy Hsia and NTU President-designate Prof Subra Suresh, showed that through manipulation of oxygen concentration, it is possible to pattern and control the growth rate of hydrogels to create the desired complex 3D shapes.
The team found that higher oxygen concentrations slow down the cross-linking of chemicals in the hydrogel, inhibiting growth in that specific area.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...