Imaging breakthrough with curved organic x-ray detectors
Materials developed at Surrey University show promise for a new generation of flexible X-ray detectors with potential applications in the medical and security sectors.

X-ray detectors are made of heavy, rigid material such as silicon or germanium, but the new, flexible detectors are cheaper and can be shaped around the objects that need to be scanned. According to the University, this improves accuracy when screening patients and reduces risk when imaging tumours and administering radiotherapy.
In a statement, Dr Prabodhi Nanayakkara, who led the research, said: “This new material is flexible, low-cost, and sensitive. But what’s exciting is that this material is tissue equivalent. This paves the way for live dosimetry, which just isn’t possible with current technology.”
Most of the X-ray detectors on the market today are heavy, rigid, energy-consuming and expensive if a large area needs to be covered.
Organic semiconductors offer a more flexible solution, but until now did not allow as detailed an X-ray image to be produced as traditional detectors.
To solve this, scientists at Surrey University's Advanced Technology Institute created devices based on an ink by adding low quantities of high atomic number elements to an organic semiconductor.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
New IET report examines grid transmission costs
In the rural East Midlands, the countryside is criss-crossed with power lines, due to the legacy of Coal Fired Power Stations built every few miles...