Imaging system identifies minuscule tumours for early treatment of cancer

An imaging system developed at MIT can detect tumours made up of a couple of hundred cells deep within the body, an advance that could lead to earlier cancer treatment.

The researchers used DOLPHIN (Detection of Optically Luminescent Probes using Hyperspectral and diffuse Imaging in Near-infrared) to track a 0.1mm fluorescent probe through the digestive tract of a living mouse. They also showed that they can detect a signal to a tissue depth of 8cm, which is said to be far deeper than any existing biomedical optical imaging technique.

The researchers hope to adapt their imaging technology for early diagnosis of ovarian and other cancers that are currently difficult to detect until late stages.

"We want to be able to find cancer much earlier," said Angela Belcher, the James Mason Crafts Professor of Biological Engineering and Materials Science at MIT and a member of the Koch Institute for Integrative Cancer Research, and the newly-appointed head of MIT's Department of Biological Engineering. "Our goal is to find tiny tumours and do so in a non-invasive way."

Existing methods for imaging tumours have a trade-off between resolution and depth of imaging, and none of the optical imaging techniques can image deeper than about 3cm into tissue. Commonly used scans such as X-ray computed tomography (CT) and magnetic resonance imaging (MRI) can image through the whole body but they can't reliably identify tumours until they reach about 1cm in size.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox