In a spin

University of Arkansas physicists seeking to better understand the properties of ferroelectric materials at the nanoscale have discovered previously unknown properties.

Ferroelectric materials are ubiquitous as they populate watches, smart cards, television remote controls and medical ultrasound devices. Because of those important properties, scientists want to be able to use these materials at the nanoscale, but researchers know very little about how these materials work.

Two University of Arkansas physicists have created computer simulations of ferroelectric nanodots to better understand the potential properties of these miniscule powerhouses. Their findings, reported in Physical Review Letters, include the discovery of previously unknown phases of the materials.

In 2004, Arkansas physicists Ivan Naumov, Laurent Bellaiche and Huaxiang Fu determined that individual ferroelectric nanodots could form a vortex within the nanodot, where the charges swirl in almost a circular motion. Recently, Sergey Prosandeev, a UA research associate in physics, and UA collaborators revealed that inhomogeneous electric fields can switch the chirality of such a vortex, which is important for technological applications.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox