In living memory

Researchers at the University of California, Los Angeles have developed a digital memory device by incorporating platinum nanoparticles into the tobacco mosaic virus.

Researchers at the

of

,

(

) have developed a digital memory device by incorporating platinum nanoparticles into the tobacco mosaic virus. They claim that the result could be used to develop biocompatible electronic equipment.

In recent years researchers have exploited the unique selectivity of biomaterials by nanostructuring biological molecules with inorganic materials for applications such as biosensing. The UCLA researchers have taken this idea one-step further with a hybrid biological system that can store digital information.

‘We have developed an electronic device, fabricated from the tobacco mosaic virus conjugated with nanoparticles, which exhibits a unique memory effect,’ said Yang Yang, the group’s lead researcher. ‘This device can be operated as an electrically bi-stable memory device whose conductance states can be controlled by a bias voltage. The states are non-volatile and can be digitally recognised.’

The TMV is a 300nm tube consisting of a protein shell and RNA core. According to the researchers, the TMV’s thin, wire-like structure makes it suitable for attaching nanoparticles, in this case, around sixteen positive platinum ions per virion. The device works by transferring charge, under a high electric field, from the RNA to the platinum nanoparticles with the TMV’s surface proteins acting as an energy barrier, stabilising the trapped charges.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox