Ionic liquid catalyst could help turn emissions into fuel
US researchers have developed an ionic liquid catalyst that they claim reduces the energy requirements of artificial photosynthesis.

The catalyst is claimed to overcome a major obstacle to producing technology that simultaneously reduces atmospheric carbon dioxide and produces fuel.
Paul Kenis, professor of chemical and biological engineering at the University of Illinois, and his research group joined forces with researchers at Dioxide Materials to produce the catalyst, which is described in a paper published in the journal Science.
Artificial photosynthesis is the process of converting carbon-dioxide (CO2) gas into useful carbon-based chemicals, most notably fuel or other compounds usually derived from petroleum, as an alternative to extracting them from biomass.
However, artificial photosynthesis has been kept from the mainstream because the process is too energy intensive.
The first step to making fuel requires turning CO2 into carbon monoxide. This process requires so much electricity to drive, more energy is used to produce the fuel than it can store.
The Illinois group claims to have overcome this major hurdle by introducing an ionic liquid to catalyse the reaction, greatly reducing the energy required to drive the process.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...