More in

JLR's experimental EDM doubles power and torque of equivalent kit in production

Jaguar Land Rover (JLR) has developed an experimental Electric Drive Module (EDM), which it says is capable of producing up to twice the power and torque of those currently found in high volume production applications.

Designed to fit between the engine and transmission, the modular EDM system covers a range of different applications. At its core is a radial flux motor packaged inside a short, cylindrical housing, along with a clutch pack and a slave cylinder.

In plug-in hybrid (PHEV) form it uses a copper-wound neodymium synchronous permanent magnet motor running up to 8,000rpm. This produces around 150kW and 400Nm of torque, while comparable production systems are generally in the region of 50 to 70kW and 120 to 200Nm.

JLR has tested the PHEV version of the system in a modified Range Rover Sport fitted with a prototype 2-litre four cylinder turbocharged gasoline engine producing around 300bhp. The engine is packaged longitudinally with an eight speed automatic gearbox, while the EDM draws its energy from a 320-volt lithium ion battery back stored in the boot.

“We looked at every element of the design to optimise the power within a very small axial space,” said Mark McNally, JLR’s senior manager, Advanced Research Technology Demonstration. “We worked in collaboration with Motor Design Ltd on the electromagnetic performance. Newcastle University worked on the mechanical design and the packaging density, maximising the magnetic flux in the system. All this helped us to deliver such a high degree of performance in such a confined space.”

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox