KAIST develops new technology for the diagnosis of EV batteries

KAIST researchers have developed a new technology that can diagnose and monitor the state of batteries with ‘high precision’ using only small amounts of current.

AdobeStock

Led by Professors Kyeongha Kwon and Sang-Gug Lee from the KAIST School of Electrical Engineering, the team has developed an electrochemical impedance spectroscopy (EIS) tool that can be used to improve the stability and performance of high-capacity batteries in electric vehicles (EVs).

An EIS tool can measure the impedance magnitude and changes in a battery, allowing the evaluation of battery efficiency and loss. It is considered an important tool for assessing the state of charge (SOC) and state of health (SOH) of batteries.

Additionally, the technology can be used to identify thermal characteristics, chemical and physical changes, predict battery life, and determine the causes of failures.

However, according to the KAIST research team, traditional EIS equipment is expensive and complex, making it difficult to install, operate, and maintain. Due to sensitivity and precision limitations, applying current disturbances of several amperes (A) to a battery can also cause significant electrical stress, increasing the risk of battery failure or fire and making it difficult to use in practice.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox