Laser sensors
Researchers at Rice University have successfully used laser-based sensors to detect the presence of specific gases in concentrations in the range of parts per billion to parts per trillion.

Researchers at
,
have successfully used laser-based sensors to detect the presence of specific gases in concentrations in the range of parts per billion to (ppb) parts per trillion (ppt).
The Rice researchers’ method is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS), which uses a semiconductor laser as the excitation light source for absorption spectroscopic measurement. Different types of molecule absorb light at different wavelengths, and the amount of light absorbed depends on the number of molecules in the light’s path. The device measures the change in the light intensity as it resonates with molecules’ absorption wavelengths.
Inside the laser, a Texas Instruments 32-bit TMS320F2812 DSP controller performs calibration, filtering and numeric processing to precisely detect these intensity changes in real time. A technician can then monitor the concentration of molecules encountered in a person’s breath or in the air to detect the presence of a particular gas.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...