More in

LHC's exotic particle discovery may shed light on nucleus mystery

Large Hadron Collider finds new particles that may shed light on the forces that bind atomic nuclei together

The world's largest physics experiment, the Large Hadron Collider (LHC) has detected a group of five sub-atomic particles whose existence has long been predicted by theory but had never before been observed. The particles, which are composed of unusual forms of the even smaller particles that make up most of matter, are hoped to provide insight into the mysterious "strong nuclear force", one of the fundamental forces of nature, which holds together the particles that make up the dense nuclei of atoms.

The new particles are all different types of particle known as the Omega-C baryon, an exotic cousin of the more familiar proton and neutron. These particles are made from quarks which have a group of quantum properties characterised by the names "up" and "down". The quarks making up the Omega-C baryon are heavier and much rarer, and have quantum properties characterised by the names "strange" and “charm”. These strange names known even more confusingly as "flavours", are used by physicists because the quantum properties do not have any similarity to properties found in the macroscopic world.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox