Magnetic levitation

A novel haptic, or touch-based, computer interface has been developed by researchers at Carnegie Mellon University.

Computers, long used as tools to design and manipulate three-dimensional objects, may soon provide people with a way to sense the texture of those objects or feel how they fit together, thanks to a haptic, or touch-based, interface developed at Carnegie Mellon University.

Unlike most other haptic interfaces that rely on motors and mechanical linkages to provide some sense of touch or force feedback, the device developed by Ralph Hollis, research professor in Carnegie Mellon’s Robotics Institute, uses magnetic levitation and a single moving part to give users a highly realistic experience. Users can perceive textures, feel hard contacts and notice even slight changes in position while using an interface that responds rapidly to movements.

'We believe this device provides the most realistic sense of touch of any haptic interface in the world today,' said Hollis, whose research group built a working version of the device in 1997.

With the help of a $300,000 National Science Foundation grant, however, he and his colleagues have improved its performance, enhanced its ergonomics and lowered its cost. The grant also enabled them to build 10 copies, six of which are being distributed to haptic researchers across the US and Canada.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox