Making light work

A £6m research project is underway to help develop next-generation transport from materials such as aluminium, magnesium and titanium.

While conventional steel has ruled the roost for more than a century, the lightness and strength of aluminium, magnesium and titanium, and their alloys makes them attractive for firms developing next-generation transport. At the University of Manchester, a five-year, £6m research project is underway to make these materials more workable.

Moreover, according to project director George Thompson, these materials could potentially be more versatile, and cost less to manufacture, than steel and even composite materials.

The Light Alloys Project is classified by the Engineering and Physical Sciences Research Council as a ‘portfolio partnership’, combining several related projects. For automotive applications, the focus is on aluminium and magnesium alloys; for shipping and light transit systems, it’s aluminium alloys; and for aerospace, alloys of all three metals.

There is much industrial interest, and partners include Alcan, BAE Systems, Corus, Qinetiq, Pechiney, Airbus and The Welding Institute (TWI), all of whom are contributing with funds and research to various parts of the project.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox