Material takes shape

Scientists in the US have determined the three-dimensional molecular structure of a material that is very promising for a variety of real-world applications.

Scientists from the US Department of Energy’s Brookhaven National Laboratory, Central Michigan University, and Michigan State University have determined the three-dimensional molecular structure of a material that is very promising for a variety of real-world applications, including more efficient solar-energy cells and biosensors, and slimmer television/computer displays.

The material is a polymer nanocomposite, which consists of distinct organic polymer and inorganic regions that self-organise naturally into composite “building blocks” with dimensions on the order of a nanometre. When put together, these basic units form the bulk material.

“Polymer nanocomposites have been attracting a lot of attention because of their potential to improve many technologies,” said Brookhaven physicist Tom Vogt, who participated in the study. “The polymer imparts unique mechanical properties, such as the ability to bend and stretch, and both components are good electrical conductors.”

The polymer component involved here is known as polyaniline. It forms a large family of polymer nanocomposites when combined with various inorganic compounds, such as metal oxides. In this case, the inorganic compound consists of the metal vanadium bound to oxygen atoms (vanadium oxide), separated by layers of water molecules.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox