Measurement technique could enhance graphene production

A non-invasive measurement technique developed by researchers in the US could aid in the production of defect-free graphene it is claimed

Researchers at Pennsylvania’s Lehigh University have reported a breakthrough in efforts to non-invasively characterise the properties of graphene.

The group, led by Prof Slava V. Rotkin, used Raman spectroscopy, a powerful technique that collects light scattered off a material’s surface, and statistical analysis to take nanoscale measurements of the strain present at each pixel on the material’s surface.

The researchers also obtained a high-resolution view of the chemical properties of the graphene surface.

“The Raman signal represents the ‘fingerprint’ of the graphene’s properties,” said Rotkin. “We’re trying to understand the influence of the magnetic field on the Raman signal. We varied the magnetic field and noticed that each Raman line in the graphene changed in response to these variations.”

The typical spatial resolution of the “Raman map” of graphene is about 500 nanometers (nm), or the width of the laser spot, the group reported in Nature Communications. This resolution makes it possible to measure variations in strain on a micrometer scale and determine the average amount of strain imposed on the graphene.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox