Microprinted liposomes as medical devices
Easily manufactured, low-cost artificial cells made using microprinting may could eventually serve as drug and gene delivery devices and in biomaterials, biotechnology and biosensing applications, claim Penn State University researchers.

It is further claimed that the artificial cells will also allow researchers to explore actions that take place at the cell membrane.
‘In a natural cell, so much is going on inside that it is extremely complex,’ said Sheereen Majd, assistant professor of biomedical engineering. ‘With these artificial cells - liposomes - we have just the shell, which gives us the ability to dissect the events that happen at the membrane.’
Understanding how drugs and pathogens cross the cell membrane barrier is essential in preventing disease and delivering drugs, and researchers have created artificial cells for quite some time.
However, Majd’s team is creating large arrays of artificial cells, made of lipids and proteins, of uniform size that can either remain attached to the substrate on which they grow, or become separated and used as freely moving vessels. The researchers report the results of their work in Advanced Materials.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
UK not prepared for climate impacts, says CCC
Perhaps a Longtitude prize to solve railway line problems. "extreme heat causing further disruption through rail buckling and power line...