MIT team 3D-prints graphene sponges

Researchers at MIT have 3D-printed graphene structures that resemble sponge or coral, which are up to ten times stronger than steel but have much lower densities.

The team started by compressing small flakes of graphene using a combination of heat and pressure. This produced a strong, stable structure whose form resembles that of some corals and microscopic creatures called diatoms. These shapes have a massive surface area in comparison to their volume, and also proved to be exceptionally strong.

"Once we created these 3D structures, we wanted to see what's the limit - what's the strongest possible material we can produce," said Zhao Qin, a research scientist at MIT’s Department of Civil and Environmental Engineering (CEE).

To explore the capabilities of the structures, the researchers created a variety of 3D models and subjected them to a range of tests. In computational simulations that mimic a tensile loading machine, one of the samples had five per cent the density of steel, but 10 times the strength. The configurations were then 3D-printed in the lab, with the physical samples matching up to the performance of the simulations. The material could be used in any application that requires a combination of low weight and extreme strength.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox