MOFs optimised for electronic olfactory devices
Electronic olfactory devices that monitor air quality could be a step closer with research that optimises combinations of metal-organic frameworks (MOFs) for the most accurate sensor array.
If brought to fruition, the research led by Cory Simon, assistant professor of chemical engineering in Oregon State University’s College of Engineering, could lead to electronic noses that also diagnose diseases and detect safety threats. Simon collaborated with chemical engineering professor Chih-Hung Chang on the research, which is published in ACS Applied Materials & Interfaces.
Smart fabric can detect and protect against toxic gases
RMIT technique makes MOFs in minutes
According to OSU, MOFs have nanosized pores and selectively adsorb gases. This is said to make them ideal for use in sensor arrays because of their tuneability, enabling engineers to use a range of materials that allows an array of MOF-based sensors to deliver detailed information.
Depending on which components make up a gas, different amounts of the gas will adsorb in each MOF, so the composition of a gas can be inferred by measuring the adsorbed gas in the array of MOFs using micro-scale balances. The challenge, however, is that all MOFs adsorb all gases.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...