More from mirrors

This research has attracted considerable attention from NASA and several potential industry partners, including Ford Motors and General Electric, according to Ice, who describes the response as "overwhelming." .

Precision mirrors to focus X-rays and neutron beams could speed the path to new materials and perhaps help explain why computers, cell phones and satellites malfunction.

In the last few years, a team led by Gene Ice of the Department of Energy's Oak Ridge National Laboratory has improved by a factor of nearly 10 the performance of mirrors that enable researchers to examine variations in structure and chemistry and even individual nanoparticles. Information at this fine level is essential to understanding composition and structure of materials, and researchers continue to push the boundaries.

"There's a worldwide race to develop high-performance mirrors that will dramatically expand the capabilities of major science facilities like the Advanced Photon Source and the Spallation Neutron Source," said Ice, a member of ORNL's Metals & Ceramics Division. "We are now able to see in far greater detail the three-dimensional heterogeneous - or dissimilar -- structure of materials and study internal interactions of one nanoparticle next to another."

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox