MRI and microscopy combine to study cancer cells' workings

The convergence of two biological imaging systems could give researchers greater insights into disease processes.

‘Let’s say you have a large population of cells,’ said Corey Neu, an assistant professor in Purdue University’s Weldon School of Biomedical Engineering. ‘Just one of them might metastasize or proliferate, forming a cancerous tumour. We need to understand what it is that gives rise to that one bad cell.’

Such an advance makes it possible to simultaneously study the mechanical and biochemical behaviour of cells, said biomedical engineering postdoctoral fellow Charilaos ‘Harris’ Mousoulis.

Being able to study a cell’s internal workings in fine detail would likely yield insights into the physical and biochemical responses to its environment. The technology, which combines an atomic force microscope and nuclear magnetic resonance system, could help researchers study individual cancer cells, for example, to uncover mechanisms leading up to cancer metastasis for research and diagnostics.

The prototype’s capabilities were demonstrated by taking nuclear magnetic resonance spectra of hydrogen atoms in water. Findings represent a proof of concept of the technology and are detailed in a research paper that appeared in the journal Applied Physics Letters. The paper was co-authored by Mousoulis; research scientist Teimour Maleki; Babak Ziaie, a professor of electrical and computer engineering; and Neu.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox