Nano scaffold rebuilds nerve damage
A Monash researcher has developed a technique that could revolutionise stem cell treatment for Parkinson's disease and spinal cord injury.

A Monash University PhD student has developed a new technique that could revolutionise stem cell treatment for Parkinson's disease and spinal cord injury.
David Nisbet from Monash University's Department of Materials Engineering has used existing polymer-based biodegradable fibres, 100 times smaller than a human hair, and re-engineered them to create a unique 3D scaffold that could potentially allow stem cells to repair damaged nerves in the human body more quickly and effectively.
Nisbet said a combined process of electrospinning and chemical treatment was used to customise the fibre structure, which can then be located within the body.
'The scaffold is injected into the body at the site requiring nerve regeneration. We can embed the stem cells into the scaffold outside the body or once the scaffold is implanted. The nerve cells adhere to the scaffold in the same way ivy grips and weaves through a trellis, forming a bridge in the brain or spinal cord. Over time, the scaffold breaks down and is naturally passed from the body, leaving the newly regenerated nerves intact, Nisbet said.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...