Nano-Spears probe cells for improved drug screening

Engineers have developed probes that measure electrical activity in animal cells, an advance that could improve drug screening.

The microscopic probes developed at Rice University are said to have simplified the process of measuring electrical activity in individual cells of small living animals. The technique allows single creatures to be repeatedly tested and could greatly improve data gathering for disease characterisation and drug interactions.

The Rice lab of electrical and computer engineer Jacob Robinson has invented the nanoscale suspended electrode arrays - nano-SPEARs - to give researchers access to electrophysiological signals from the cells of small animals without injuring them. Nano-SPEARs replace glass pipette electrodes that are aligned by hand each time they are used. The research is detailed in Nature Nanotechnology.

“One of the experimental bottlenecks in studying synaptic behaviour and degenerative diseases that affect the synapse is performing electrical measurements at those synapses," Robinson said. "We set out to study large groups of animals under lots of different conditions to screen drugs or test different genetic factors that relate to errors in signalling at those synapses."

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox