Nano-textured thin silicon has promise for improved photovoltaic cells
European project demonstrates innovative method for cutting thin films of silicon and creating light-absorbing surface nano-structures
Creating thin photovoltaic cells has long been a goal of researchers working in the field of crystalline silicon. Thinner cells can be semi-transparent or flexible, making them more versatile than thick cells, and also they use less material, reducing the cost of the cells. But reducing the thickness is fraught with difficulty. Cutting a thin layer from a block of silicon causes loss of material, known as kerf loss. Moreover, thinner silicon films absorb less light than thicker ones; photons, especially ones at longer light wavelengths, can pass straight through the film before their energy is absorbed.
The new research brings together a team drawn from different disciplines within the photovoltaic community to tackle these problems. “The core of this project was to bring together researchers from the different fields needed (photovoltaics, photonics, nanostructuring) to interact directly,” explained research leader Valerie Depauw of imec, a nanoelectronics and digital technologies R&D hub in Leuven, Belgium.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
National Gas receives funding to develop Gravitricity underground hydrogen storage system
One single rock salt mine - Winsford - has 23 <i>MILLION </i>cubic metres of void and even allowing for 10% of that void set aside for hazardous waste...