Nano tool studies cystic fibrosis

Researchers are using a multi-functional sensing tool which employs nanotechnology to investigate adenosine triphosphate release and its role in cystic fibrosis.

Researchers are using a multi-functional sensing tool which employs nanotechnology to investigate adenosine triphosphate (ATP) release and its role in cystic fibrosis. The ATP study marks the first application of the sensing system developed by a research team led by Christine Kranz at the

.

This patented technology adds recessed micro- and nano-electrodes to the tip of an atomic force microscope (AFM), creating a single tool that can simultaneously monitor topography along with electrochemical activity at the cell surface.

The new multi-functional imaging technique will advance the study of biological samples, said Boris Mizaikoff, an associate professor at Georgia Tech's School of Chemistry and Biochemistry and director of its Applied Sensors Lab.

"Conventional AFM can image surfaces, but usually provides limited chemical information," he said. "And though scanning electrochemical microscopy (SECM), another probing technique, provides laterally resolved electrochemical data, it has limited spatial resolution. By combining AFM and SECM functionality into a single scanning probe, our tool provides researchers with a more holistic view of activities at the cell surface."

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox