Nanoantenna effect has potential for optical switching

New frontiers in optoelectronics could be opened up thanks to research led by Southampton University.

A team investigating the properties of very small antennae has produced a fast optical transistor capable of changing the physical state of a metal oxide from insulator to conductor.

The team is looking at nanostructures that interact strongly with light; an area of interest because it could allow optical devices to be used for a very wide variety of applications, for example in computing and medicine. Such structures are smaller than the wavelength of visible light, yet allow light energy to be concentrated to a very high level.

Working with teams with specialised capabilities at Salford University and the University of the Basque Country in San Sebastien, Spain, the Southampton researchers used gold nanoantennae to achieve a phase transition in vanadium oxide (VO2). At room temperature, VO2 is an insulator, but if heated above 68°C its structure changes and it conducts electricity; this makes it potentially useful in optical transistors, because light energy can be used to rate its temperature.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox