Nanofoam synthesis method could unlock hydrogen economy
Washington State engineers discover method for making highly-effective water-splitting catalyst
Efficient ways of liberating hydrogen from water are a key part of the so-called hydrogen economy – the long-hyped, but still elusive vision of a society where hydrogen is the key fuel for making energy, rather than hydrocarbons. Electrolysis is the most common process, but water being a very stable molecule, some catalyst is invariably needed to reduce the energy needed to force the separation of hydrogen and oxygen. However, up to now the most effective catalysts available have been based on precious metals like platinum and ruthenium, making the process very expensive.
The breakthrough from the stream at Washington State, in Pullman, Washington, is a method for making large amounts of as high-quality catalyst, based on nickel and iron – much cheaper and more abundant materials than precious metals. The catalyst is in the form of a metal foam with nanometre-scale pores; a highly effective structure, as its ratio of surface area to mass is huge, providing many active sites for the dissociation reaction to take place.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...