New insights into cancer mechanisms from acoustic tweezer separation method
American researchers have developed a low-energy way of separating cancer cells from blood samples using sound waves, which leaves the cells undamaged for study
An improvement in the ability of clinicians to diagnose cancer and to understand how it spreads through the body could result from a new technique that uses sound waves to isolate cancer cells in blood samples. Developed by engineers from Penn State University, Carnegie Mellon University and MIT, the ‘acoustic tweezers’ will give doctors a low-cost method of separating cancer cells without damaging them.
In blood samples from cancer patients, typically one cell in a billion is a circulating cancer cell (CTC). “Looking for CTCs is like looking for a needle in a haystack,” said research leader Tony Jun Huang.
The acoustic tweezers use a phenomenon called tilted-angle surface acoustic waves to separate out tumour cells. This is much gentler than centrifugation, which spins the sample at 3,000rpm for ten minutes. The team used a microfluidic device to analyse the blood samples continuously, and chose acoustic pressures that would nudge the CTCs, which are heavier than blood cells, out of the stream and into a collection channel.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...