More in

New method produces graphene crystals 'in minutes instead of hours'

A method for creating large graphene crystals in minutes instead of hours has been demonstrated by Oxford University researchers.

The development is expected to pave the way for cost-effective high quality graphene production on a commercial scale. This would aid the development of new technologies in fields such as electronics and metrology, owing to graphene’s combination of strength, flexibility, electrical properties, and chemical resistance.

The technique, from Professor Nicole Grobert of Oxford University’s Department of Materials, creates graphene crystals around 2-3 millimetres in size in just 15 minutes, compared to times of up to 19 hours when using current chemical vapour deposition (CVD) techniques. A scaled version could produce flakes of graphene in large wafer-sized sheets.

A thin film of silica was deposited on a platinum foil which, when heated, reacts to create a layer of platinum silicide. This melts at a lower temperature than either platinum or silica, creating a thin liquid layer that smooths out nanoscale valleys in the platinum. Carbon atoms in methane gas brushing over the surface then form large flakes of graphene. Using CVD with just platinum creates flakes of around 80 microns (0.08mm). But with the liquid layer of platinum silicide added, graphene crystals of 2-3 millimetres were produced in minutes.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox