Optical fibres from thin air
An “air waveguide” has been used to enhance light signals collected from distant sources.

It is claimed the air waveguides - developed by Howard Milchberg and his lab at the University of Maryland - could have many applications, including long-range laser communications, detecting pollution in the atmosphere, making high-resolution topographic maps and laser weapons.
Because light loses intensity with distance, the range over which such tasks can be done is limited. Lasers, which produce highly directed beams, lose focus due to their natural spreading, or worse, due to interactions with gases in the air. Fibre-optic cables can trap light beams and guide them like a pipe, preventing loss of intensity or focus.
A single waveguide could be used to send out a laser and collect a signal
Typical fibres consist of a transparent glass core surrounded by a cladding material with a lower index of refraction. When light tries to leave the core, it gets reflected back inward. But solid optical fibres can only handle so much power, and they need physical support that may not be available where the cables need to go, such as the upper atmosphere. Now, Milchberg’s team has found a way to make air behave like an optical fibre, guiding light beams over long distances without loss of power.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...