Optical gas sensing from polymer nanocavity
Using microscopic polymer light resonators that expand in the presence of specific gases, researchers at MIT’s Quantum Photonics Laboratory have developed new optical sensors.

The optical sensors are claimed to be ideal for detecting trace gas concentrations due to their high signal-to-noise ratio, compact, lightweight nature, and immunity to electromagnetic interference.
Although other optical gas sensors had been developed before, the MIT team conceived an extremely sensitive, compact way to detect vanishingly small amounts of target molecules. They describe their new approach in Applied Physics Letters.
The researchers fabricated wavelength-scale photonic crystal cavities from PMMA, an inexpensive and flexible polymer that swells when it comes into contact with a target gas.
The polymer is infused with fluorescent dye, which emits selectively at the resonant wavelength of the cavity through a process called the Purcell effect. At this resonance, a specific colour of light reflects back and forth a few thousand times before eventually leaking out. A spectral filter detects this small colour shift, which can occur at even sub-nanometre level swelling of the cavity, and in turn reveals the gas concentration.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...