Perovskite flaws can improve solar device efficiency

Researchers at the University of Washington and Oxford University have demonstrated that perovskite materials, generally thought to be uniform in composition, contain flaws that can be engineered to improve solar devices.

“Perovskites are the fastest-growing class of photovoltaic material over the past four years,” said Dane deQuilettes, a UW doctoral student working with David Ginger, professor of chemistry and associate director of the UW’s Clean Energy Institute.

“In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today’s silicon-based solar cells, rivalling technology that took 50 years to develop,” deQuilettes said in a statement. “But we also suspect there is room for improvement.”

UW researchers used microscopy to identify inefficient regions in perovskite materials used in solar cells, as evidenced by dark areas in C
UW researchers used microscopy to identify inefficient regions in perovskite materials used in solar cells, as evidenced by dark areas in C

The research team, whose work is published in Science, is said to have used high-powered imaging techniques to find defects in the perovskite films that limit the movement of charges and limit the efficiency of the devices. Perovskite solar cells have so far have achieved efficiencies of roughly 20 per cent, compared to about 25 per cent for silicon-based solar cells.

In a collaboration made possible by the Clean Energy Institute, the team used confocal optical microscopy, which is more often used in biology, and applied it to semiconductor technology. They used fluorescent images and correlated them with electron microscopy images to find “dark” or poorly performing regions of the perovskite material at intersections of the crystals. In addition, they reportedly discovered that they could “turn on” some of the dark areas by using a chemical treatment.

The images offered several surprises but also will lead to accelerated improvements in the materials’ uniformity, stability and efficiency, according to corresponding author Ginger, the Alvin L. and Verla R. Kwiram Endowed Professor of Chemistry and Washington Research Foundation Distinguished Scholar.

“Surprisingly, this result shows that even what are being called good, or highly-efficient perovskite films today still are ‘bad’ compared to what they could be. This provides a clear target for future researchers seeking to improve and grow the materials,” Ginger said.

The imaging technique developed by the UW team also offers an easy way to identify previously undiscovered flaws in perovskite materials and to pinpoint areas where their composition can be chemically altered to boost performance, Ginger said.

Lead author deQuilettes, who spearheaded the project as a Clean Energy Institute graduate fellow, estimates there are more than a thousand laboratories around the world currently researching the semiconducting properties of perovskite materials. Yet there is more work to be done to understand how to consistently make a material that is stable, has uniform brightness and can stand up to moisture without degrading. The UW research offers new ways for people to think strategically about how to improve the materials and how to extend their applications to high performance light-emitting devices such as LEDs and lasers.

“There are so many of us focusing on perovskites, so hopefully this technique will offer some new direction and steer us toward the places we can look to optimize their energy-capturing and emitting potential,” deQuilettes said.