Printing process holds promise for bendable displays

A new process for creating flexible large area electronics could lead to breakthroughs in technologies including prosthetics, high-end electronics and fully bendable digital displays.

This is the claim of a team of engineers from Glasgow University’s Bendable Electronics and Sensing Technologies (BEST) group who have developed a new method for manufacturing electronics that prints high-performance silicon directly onto flexible materials. The EPSRC-supported research is described in a paper published in NPJ Flexible Electronics.

Until now, the most advanced flexible electronics have been mainly manufactured via a three-stage stamping process called transfer printing.

In the process, a silicon-based semiconductor nanostructure is first designed and grown on a substrate. In the second stage, the nanostructure is picked up from the substrate by a soft polymeric stamp. In the final stage, the nanostructure is transferred from the stamp to another flexible substrate, ready for use in bendable devices like health monitors, soft robotics, and bendable displays.

According to BEST, the transfer printing process has a number of limitations which have made it challenging to create more large-scale, complex flexible devices. Precisely controlling critical variables such as the speed of transfer, and the adhesion and orientation of the nanostructure, makes it difficult to ensure each stamp is identical to the last. An incomplete or misaligned polymeric stamp onto the final substrate can lead to substandard electronic performance or even prevent devices from working.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox