Project works on silicon carbide ICs for high temperatures
Scientists at Raytheon’s Glenrothes facility are working on a project to demonstrate integrated circuits made from silicon carbide that operate at temperatures above 300°C.

Ewan Ramsay, a principal engineer at Raytheon, told The Engineer: ‘The technology can be used to implement analogue and digital functions where the operating temperature can go above 300°C.
‘The technology is currently at the demonstrator phase and our project is focusing on two main demonstrators,’ said Ramsay. ‘The first is a standardised sensor interface circuit and the second is a demonstration of a gate drive for high-temperature power switches.’
Raytheon is hoping to combine its complementary metal oxide semiconductor (CMOS) experience with recent silicon carbide process experience into a unique capability.
Jen Cormack, Raytheon’s silicon carbide manager, said: ‘We believe that by manufacturing integrated circuits on thin wafers of silicon carbide, the temperature at which integrated circuits can operate will be increased by more than 200°C.’
Previously, integrated circuits designed to withstand high temperatures were made out of silicon, which could only operate up to temperatures of 125°C.
Ramsay added: ‘In aerospace there is a pressing need to improve the fuel efficiency of commercial airliners. One way to do this is to reduce the weight of the aircraft by decreasing the amount of wiring around the gas turbine.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...