Researchers gain fresh insights into battery electrode
Researchers at MIT have observed the inner workings of a lithium-ion battery electrode.

The new findings explain the high power and long cycle life of such batteries, the researchers claim.
The findings, which appear in a paper in Nano Letters, were co-authored by MIT postdoc Jun Jie Niu, research scientist Akihiro Kushima, professors Yet-Ming Chiang and Ju Li, and three others.
The electrode material studied, lithium iron phosphate (LiFePO4), is considered a promising material for lithium-based rechargeable batteries and has been demonstrated in applications ranging from power tools to large-scale grid storage.
The MIT researchers found that inside this electrode, during charging, a solid-solution zone (SSZ) forms at the boundary between lithium-rich and lithium-depleted areas, the region where charging activity is concentrated, as lithium ions are pulled out of the electrode.
Li said in a statement that this SSZ has been theoretically predicted to exist, but the MIT team observed it directly for the first time in transmission electron microscope (TEM) videos taken during charging.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...