Scientists grow realistic lung tissue utilising magnetism
Scientists from Rice University and Nano3D Biosciences have used magnetic levitation to grow some of the most realistic lung tissue ever produced in a laboratory.

The research is part of an international trend in biomedical engineering to create laboratory techniques for growing tissues that are virtually identical to those found in people’s bodies. In the new study, researchers combined four types of cells to replicate tissue from the wall of the bronchiole deep inside the lung.
The research is scheduled to appear in a future issue of the journal Tissue Engineering Part C: Methods.
‘One of the unique things about the magnetic levitation technology is that it allows us to move cells around and arrange them the way that we want for a particular type of tissue,’ said study co-author Tom Killian, professor and department chair of physics and astronomy at Rice. ‘This is the first time anyone has arranged these four cell types in the same way that they are found in lung tissue.’
According to a statement, in-vitro laboratory tests have historically been conducted on 2D cell cultures grown in flat Petri dishes, but scientists have become increasingly aware that cells in flat cultures sometimes behave and interact differently than cells that are immersed in 3D tissue.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...