Self-assembling polymers use evolutionary principles

Researchers from City University New York (CUNY) have developed a technique that allows polymers to self-assemble in numerous configurations, reorganising their structure according to their environment.

The peptides - strings of polymers composed of amino acids - can be used as the building blocks for supramolecular nanomaterials, and could lead to advances in drug delivery, food science and cosmetics. According to the CUNY team, previous developments in peptide nanotechnology relied on chance discoveries or laborious design processes. But the new method uses the principles of evolution to reveal previously undiscovered combinations.

"In our quest to find materials based on biology's building blocks - but which are much simpler - it is difficult to rationally design these materials because there are very many possible permutations that could be explored," said Rein Ulijn, director of the CUNY Advanced Science Research Centre (ASRC)'s Nanoscience Initiative.

Described in the journal Nature Nanotechnology, the process involves subjecting the peptides to continuous enzymatic condensation, hydrolysis and sequence exchange, which creates a ‘dynamic combinatorial peptide library’. The method allowed Ulijn's team to identify a range of peptide-based materials that had not been observed before.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox