Self-healing thermoelectric material adds durability to wearables

A pliable, self-healing thermoelectric material from KAUST could lead to wearable electronic devices that can withstand the rigours of daily life.

The prototype thermoelectric material has been developed by the KAUST team in Saudi Arabia with three organic compounds.

Sensors worn on the skin or as implants can monitor valuable markers of human health, including heart rate, blood pressure, brain activity, muscle motion, calories burned and the release of certain chemicals. The ultimate goal is self-powered wearable technologies, but these will require a reliable and durable source of electricity.

Shape-shifting electronics have potential for implants and movable medical sensors

Thermoelectric material converts waste heat into electricity

Thermoelectric materials, which use temperature gradients to generate electricity, have the potential to power wearable technologies using body heat, eliminating the need for batteries. Current materials, however, lack the flexibility, strength and resilience to avoid being damaged.

A team led by Derya Baran and Seyoung Kee at KAUST have blended the highly conductive thermoelectric polymer PETOT:PSS (poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate), with dimethyl sulfoxide, an organic compound that boosts the performance of PETOT:PSS, and Triton X-100, a sticky, gel-like agent that encourages hydrogen bonding with PETOT:PSS. The research is described in Advanced Functional Materials.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox