Sensor integrated into RFA needle offers surgical accuracy

Researchers in South Korea have designed a thin polymeric sensor on a radiofrequency ablation needle to monitor temperature and pressure in real time.

The sensors, integrated onto a 1.5mm diameter needle tip, are said to have proven their efficacy during clinical tests and expect to provide a new opportunity for safer and more effective medical practices.

Radiofrequency ablation (RFA) is a minimally invasive surgery technique for removing tumours and treating cardiovascular disease. During a procedure, an unintended audible ‘steam pop’ can occur due to the increased internal steam pressure in the area being ablated. According to the team at KAIST (Korea Advanced Institute of Science and Technology) this phenomenon has been cited as a cause of various negative thermal and mechanical effects on neighbouring tissue.

MORE FROM MEDICAL & HEALTHCARE

KAIST’s Professor Inkyu Park said that his team’s integrated sensors reliably detected the occurrence of steam pop. The sensors also monitor rapidly spreading hot steam in tissue. It is expected that the diverse properties of tissue undergoing RFA could be checked by utilising the physical sensors integrated on the needle.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox