Sensor makes hydrogen fuel safer

Engineers from the University of Florida have developed a tiny, self-powered sensor that could make hydrogen fuelled transport safer by detecting hydrogen leaks and sounding an alarm wirelessly.

Engineers from the

(UF) have developed a tiny, self-powered sensor that could make hydrogen fuelled transport safer by detecting leaks and sounding an alarm wirelessly.

The device, called a sensor node because it is designed to work in tandem with dozens or hundreds more like it, has the ability to draw its power from a tiny internal power source that harvests energy from small vibrations. That means future versions could one day operate continuously without batteries or maintenance when affixed to cars, refrigerators, pumps, motors or any other machine that gives off a slight vibration.

“You need lots of hydrogen sensors to detect leaks, but you don’t want to have to maintain them or change the battery every couple of months,” said Jenshan Lin, an associate professor of electrical and computer engineering and the lead investigator on the NASA-funded sensor project. “Our sensor can operate completely independently.”

Lin and his colleagues developed the sensor node over the past two years as a part of the NASA Hydrogen Research Program at UF. The programme spans several research projects. NASA uses liquid hydrogen to fuel the space shuttle, and the goal of the $1 million-plus sensor project is to help the space agency improve the safety and reliability of all its hydrogen systems.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox