Shape memory alloy is key to morphing wings on experimental aircraft

NASA has successfully used a heat-activated shape memory alloy to morph an aircraft’s wings in flight tests, an advance with potential benefits for subsonic and future supersonic aircraft.

The flights which took place at NASA’s Armstrong Flight Research Center in California, are part of the SAW (Spanwise Adaptive Wing) project that aims to validate the use of a lightweight material to fold the outer portions of aircraft wings and their control surfaces to optimal angles in flight.

SAW - a joint effort between Armstrong, NASA’s Glenn and Langley Research Centers, Boeing Research & Technology, and Area-I Inc. in Kennesaw, Georgia - may produce multiple in-flight benefits to subsonic and supersonic aircraft in the future.

Previous efforts to fold wings in flight has been dependent on conventional motors and hydraulic systems, which can be cumbersome to the aircraft. According to NASA, the SAW project intends to obtain a wide spectrum of aerodynamic advantages in flight by folding wings through the use of a shape memory alloy, which is built into to an actuator on the aircraft and folds the outer portion of an aircraft’s wings in flight.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox