Silicon wires for better memory

US scientists have made a memory device that combines silicon nanowires with a more traditional type of data-storage to make more reliable storage that can be integrated into commercial applications

Scientists have made a memory device that combines silicon nanowires with a more traditional type of data-storage to make more reliable storage that can be integrated into commercial applications.

 

 

Scientists at the National Institute of Standards and Technology (NIST), George Mason University and Kwangwoon University in Korea developed the non-volatile memory hardware. In the device, nanowires are integrated with a higher-end type of non-volatile memory that is similar to flash, a layered structure known as semiconductor-oxide-nitride-oxide-semiconductor (SONOS) technology. The nanowires are positioned using a hands-off self-alignment technique, which could allow the production cost of large-scale devices to be lower than flash memory cards, which require more complicated fabrication methods.

 

The researchers grew the nanowires onto a layered oxide-nitride-oxide substrate. Applying a positive voltage across the wires causes electrons in the wires to tunnel down into the substrate, charging it. A negative voltage causes the electrons to tunnel back up into the wires. This process is the key to the device’s memory function. When fully charged, each nanowire device stores a single bit of information, either a ‘0’ or a ‘1’ depending on the position of the electrons. When no voltage is present, the stored information can be read.

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox