Simulated shaft furnace assesses hydrogen as fuel for furnaces
Hydrogen’s utility as a reductant for steelmaking is the subject of a study by steel specialists who are using a simulated shaft furnace to help make the assessment.

The team used laboratory simulations to get an accurate picture of how hydrogen and other materials behave in the extreme conditions of a furnace, as a first step towards piloting a new type of hydrogen-fuelled process.
The study was a collaboration with the Steel and Metals Institute, based at Swansea University, and the Materials Processing Institute, based in Middlesbrough working with global metals and mining companies. The project was funded by the BEIS Industrial Fuel Switching Programme.
Steel can be recycled infinitely with no loss of quality, but the process of manufacturing steel remains carbon-intensive with six per cent of global carbon emissions coming from the ironmaking process, and a single blast furnace producing five million tonnes of carbon annually.
At present, iron is reduced in the furnace using carbon monoxide from coke, which attracts oxygen from the iron ore. The result is that the iron ore becomes pure iron that is ready for steelmaking, but the extra atom of oxygen turns carbon monoxide into the greenhouse gas carbon dioxide.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
WildFusion helps robot traverse difficult terrain
Son of Daleks? can they climb stairs?