Simulation demonstrates feasibility of autonomous interplanetary travel
A simulation has shown that current technology can facilitate pulsar-based navigation, a development that could lead to autonomous interplanetary travel.

National Physical Laboratory (NPL) and Leicester University have published a paper that reveals a spacecraft’s position in space - in the direction of a particular pulsar - can be calculated autonomously using a small X-ray telescope on board the craft, to an accuracy of 2km.
According to Leicester University, the method uses X-rays emitted from pulsars, which can be used to work out the position of a craft in space in 3D to an accuracy of 30km at the distance of Neptune. Pulsars are dead stars that emit radiation in the form of X-rays and other electromagnetic waves. For ‘millisecond pulsars’, the pulses of radiation occur with the regularity and precision of an atomic clock and could be used much like GPS in space.
The paper, published in Experimental Astronomy, details simulations undertaken using data, such as the pulsar positions and a craft’s distance from the Sun, for a European Space Agency feasibility study of the concept.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
I´m sure politicians will be thumping tables and demanding answers - while Professor Bell, as reported above, says ´wait for detailed professional...