Snail-inspired robot climbs walls
Researchers based at the Bristol Robotics Laboratory have developed a robot that mimics the motion of a snail, an advance that could be applied to autonomous inspection of difficult-to-access surfaces.

The robot’s sliding suction mechanism enables it to slide on water, mimicking a snail’s mucus that also acts as an adhesive.
The study, published in Nature Communications, shows a novel way for robots to scale walls easily, potentially changing how surfaces such as blades of wind turbines, hulls of ships, aircrafts and glass windows of skyscrapers are inspected. According to the team, these features also endow sliding suction with great potential for future applications in robotic fields, including industrial gripping, climbing, outdoor and transportation.
Snails can stably slide across a surface with a single high-payload sucker, offering an efficient adhesive locomotion mechanism for next-generation climbing robots. The critical factor for snails’ sliding suction behaviour is mucus secretion, which reduces friction and enhances suction.
In a statement, lead author Tianqi Yue, a research associate at Bristol University’s School of Engineering Mathematics and Technology, said: “People know that snails have a stable adhesive sliding behaviour, even though they are carrying a heavy payload, in this case a shell.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...