Soft autonomous robot mimics the actions of an earthworm
Researchers at the Massachusetts Institute of Technology (MIT), Harvard University and Seoul National University have engineered a soft autonomous robot that moves through peristalsis, crawling across surfaces by contracting segments of its body.

Sangbae Kim, the Esther and Harold E Edgerton assistant professor of mechanical engineering at MIT, said in a statement that such a soft robot may be useful for navigating rough terrain or squeezing through tight spaces.
The robot is named Meshworm for the flexible, mesh-like tube that makes up its body.
To make the robot, researchers created artificial muscle from wire made of nickel and titanium — a shape-memory alloy that stretches and contracts with heat. They wound the wire around the tube, creating segments along its length. They then applied a small current to the segments of wire, squeezing the mesh tube and propelling the robot forward.
A significant challenge in soft robotics has been in designing soft actuators to power robots such as Meshworm. One solution has been to use compressed air pumped through a robot to move it, but Kim said integrating micro air compressors into a small autonomous robot is a challenge.
Register now to continue reading
Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.
Benefits of registering
-
In-depth insights and coverage of key emerging trends
-
Unrestricted access to special reports throughout the year
-
Daily technology news delivered straight to your inbox
Experts speculate over cause of Iberian power outages
The EU and UK will be moving towards using Grid Forming inverters with Energy Storage that has an inherent ability to act as a source of Infinite...