Solar-powered reactor adds circularity to plastic waste and greenhouse gases

Researchers have developed a solar-powered reactor that transforms plastic waste and greenhouse gases into sustainable fuels and other valuable products, an advance that helps the development of a circular economy.

AdobeStock

Developed by researchers from Cambridge University, the system converts two waste streams into two chemical products simultaneously, marking the first time this has been achieved in a solar-powered reactor.

The reactor converts carbon dioxide (CO2) and plastics into different products that are useful in a range of industries. In tests, CO2 was converted into syngas, a key building block for sustainable liquid fuels, and plastic bottles were converted into glycolic acid, which is widely used in the cosmetics industry. According to the University, the system can be tuned to produce different products by changing the type of catalyst used in the reactor.

Converting plastics and greenhouse gases into useful and valuable products using solar energy is an important step in the transition to a more sustainable, circular economy. The results are reported in Nature Synthesis.

“Converting waste into something useful using solar energy is a major goal of our research,” Professor Erwin Reisner from the Yusuf Hamied Department of Chemistry, the paper’s senior author, said in a statement. “Plastic pollution is a huge problem worldwide, and often, many of the plastics we throw into recycling bins are incinerated or end up in landfill.”

Register now to continue reading

Thanks for visiting The Engineer. You’ve now reached your monthly limit of news stories. Register for free to unlock unlimited access to all of our news coverage, as well as premium content including opinion, in-depth features and special reports.  

Benefits of registering

  • In-depth insights and coverage of key emerging trends

  • Unrestricted access to special reports throughout the year

  • Daily technology news delivered straight to your inbox